
Extra Practice #1

Write in point-slope form an equation of the line through each pair of points.

1.
$$(-2, -3)$$
 and $(2, -1)$

2.
$$(-5, -2)$$
 and $(-3, 8)$

3. Write an equation in <u>slope-intercept form</u> for the line graphed.

Find the intercepts and graph each line.

4.
$$x + 3y = -6$$

5.
$$-2x - 5y = -10$$

Graph each line.

6.
$$y = -\frac{4}{5}x + 5$$

7.
$$y = -2$$

8.
$$x = 4$$

- **9.** Write an equation in <u>slope-intercept form</u> for the line containing the points (7, 11) and (13,17).
- **10.** Write the equation of a line in <u>standard form</u> passing through (-1,-5) and (-6,-2).
- **11.** Tell whether this relation represents a function. **Explain**.

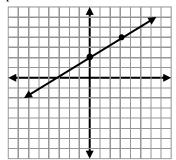
х	3	4	3	5
у	7	2	2	1

Graph each inequality.

12.
$$-2y < -x - 2$$

13.
$$y \ge x$$

14.
$$y \ge 3$$


Extra Practice #1

Write in point-slope form an equation of the line through each pair of points.

1.
$$(-2, -3)$$
 and $(2, -1)$

2.
$$(-5, -2)$$
 and $(-3, 8)$

3. Write an equation in <u>slope-intercept form</u> for the line graphed.

Find the intercepts and graph each line.

184.
$$x + 3y = -6$$

5.
$$-2x - 5y = -10$$

Graph each line.

6.
$$y = -\frac{4}{5}x + 5$$

7.
$$y = -2$$

8.
$$x = 4$$

- **9.** Write an equation in slope-intercept form for the line containing the points (7, 11) and (13,17).
- **10.** Write the equation of a line in <u>standard form</u> passing through (-1,-5) and (-6,-2).
- **11.** Tell whether this relation represents a function. **Explain**.

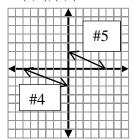
I	х	3	4	3	5
ſ	у	7	2	2	1

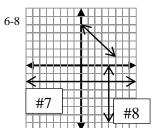
Graph each inequality.

12.
$$-2y < -x - 2$$

13.
$$y \ge x$$

14.
$$y \ge 3$$


15.
$$x < -2$$

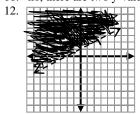

Answers:

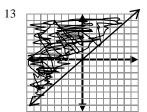
1.
$$y + 3 = \frac{1}{2}(x + 2)or \ y + 1 = \frac{1}{2}(x - 2)$$

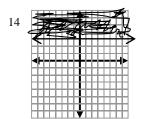
2. $y + 2 = 5(x + 5)or \ y - 8 = 5(x + 3)$
3. $y = \frac{2}{3}x + 2$
4. (-6,0) (0, -2)
5. (0, 2), (5,0)

2.
$$y + 2 = 5(x + 5)$$
 or $y - 8 = 5(x + 3)$

3.
$$y = \frac{2}{3}x + 2$$



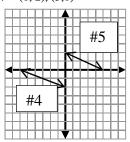


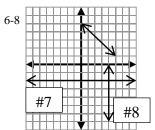

9.
$$v = x + 4$$

9.
$$y = x + 4$$

10. $3x + 5y = -28$

11. no, there are two y-values for
$$x = 3$$



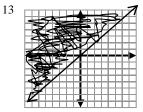

Answers:

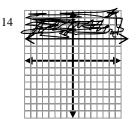
1.
$$y + 3 = \frac{1}{2}(x + 2)or \ y + 1 = \frac{1}{2}(x - 2)$$

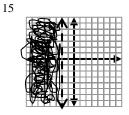
2. $y + 2 = 5(x + 5)or \ y - 8 = 5(x + 3)$
3. $y = \frac{2}{3}x + 2$
4. (-6,0) (0, -2)
5. (0, 2), (5,0)

2.
$$y + 2 = 5(x + 5)or y - 8 = 5(x + 3)$$

3.
$$y = \frac{2}{3}x + 2$$




9.
$$y = x + 4$$


10.
$$3x + 5y = -28$$

^{11.} no, there are two y-values for x = 3

